

 Navigation

 	
 index

 	KeepMePosted 0.1 documentation

KeepMePosted Documentation

This module provides an object-oriented event handling framework. In this
framework, events are registered by classes and then broadcasted by individual
objects. Listening for events from specific objects is made easy.

Simple Example

The most important parts of this framework are the Dispatcher class and the
event() decorator. Dispatcher is a base class for objects that want to
broadcast events and the event decorator is used to register events.

>>> from kemepo import Dispatcher, event
>>> class Button (Dispatcher):
 @event
 def on_press(self):
 print('Calling internal handler')

The method decorated by event() is taken to be the “internal handler”, distinct
from any “external observers” that may be attached using connect() later on.
When an event is triggered using handle(), the internal handler is called
before the external observers.

>>> button = Button()
>>> button.connect(on_press=lambda: print('Calling external observer.'))
>>> button.handle('on_press')
Calling internal handler.
Calling external observer.

Installation

KeepMePosted can be installed from PyPI:

$ pip install kemepo

You can also download the source code directly from GitHub. The code is made
available under the MIT license. If you find the code useful and want to make
improvements, feel free to make pull requests:

$ git clone https://github.com/kalekundert/KeepMePosted.git kemepo

Registering Events

Within this framework, objects can only broadcast events that have already been
registered with their class. Typically, events are registered when the class
is created using the event() decorator:

>>> class CheckBox (Dispatcher):
 @event
 def on_check(self):
 print('Calling internal handler')

This registers a new event based on the given method. The name of the event is
the name of the method, and the method itself becomes the internal handler for
that type of event. Furthermore, the argument signature and the docstring of
the handler are used for error checking and documentation, respectively. This
information is often useful even if the handler itself is left unimplemented.

It is possible to register new events without using the event decorator. The
advantage of doing this is that you can register events after the class has
been created. You also don’t need to specify an internal handler (the second
argument) when manually registering events, although doing so provides improved
error checking and documentation, as discussed above.

>>> CheckBox.register_event('on_uncheck', lambda: None)

All that said, you should very rarely need to manually register events. In the
typical case, the event() decorator should be preferred.

Triggering Events

There are two ways to trigger an event: handle() and notify(). The difference
concerns the internal handler (i.e. the callback used the register the event),
which is called by handle() and not called by notify(). Referring back to the
button example from the first section:

>>> button.handle('on_press')
Calling internal handler.
Calling external observer.
>>> button.notify('on_press')
Calling external observer.

Usually you should use notify(). Use notify() only in cases where notify()
would create infinite recursion. If you simply don’t want the internal handler
to do anything, just leave it unimplemented.

Reacting to Events

Although only objects that inherit from Dispatcher can broadcast events, any
callback can be used to react to events. The connect() method provides a very
flexible interface for connecting observers to dispatchers. In particular,
observers can be provided either as keyword arguments mapping event names to
callbacks or as objects with method names matching event names.

The former approach is probably more intuitive. Any type of callable can be
used as an observer callback, including functions and lambda functions.

>>> def observer_function(): print("Calling an observer function.")
>>> button.connect(on_press=observer_function)
>>> button.connect(on_press=lambda: print("Calling an observer lambda."))

The latter approach provides a powerful way to listen to many events from the
same object. Provide any number of arguments to connect, and each will be
searched for methods with names matching registered events. Those methods will
be connected as observers of those events.

>>> class Observer:
 def on_press(self):
 print("Calling an observer method.")

>>> observer_object = Observer()
>>> button.connect(observer_object)

No matter an observer is specified, it must have the same argument signature as
the internal handler used to register the event. A TypeError will be raised
otherwise.

Events can be disconnected using the disconnect() method.

>>> button.disconnect(observer_function)
>>> button.disconnect(observer_object)

Error Checking

Strong error checking is possible because events are registered when the class
is created. Exceptions are thrown if you attempt any of the following:

	Connect to an undefined event.

	Handle an undefined event.

	Connect an observer that doesn’t have the same argument signature as the
internal handler.

	Handle an event without providing the arugments expected by the internal
handler.

Docstring Generation

One advantage of registering events using the event() decorator (e.g. before
the class in question has been created) is that those events can be
incorporated into the class docstring. This is useful both for use with help()
in the python interpreter and for use with Sphinx for online documentation.

To incorporate event documentation into the docstring of a Dispatcher subclass,
just include the string ‘{events}’. This will be replaced by a list of the
events that are registered with that class. (Note that only events registered
using the event() decorator will be included.) Replacement is done using
standard string formatting, so this is roughly what’s going on behind the
scenes:

>>> cls.__doc__ = cls.__doc__.format(events=events_docstring)

You can control the exact format of the event documentation using the
set_docstring_formatter() function. This function takes one argument, which
can either be the name of a built-in formatter or a custom formatter function.

Currently, the two built-in formatters are named pretty and sphinx. The
pretty formatter is the default. It’s the more readable of the two and it’s
meant to look good in interpreter sessions, but it’s not rendered very nicely
by Sphinx (although it does produce legal restructured text). The sphinx
formatter is a more heavily marked-up alternative that looks better when
rendered by Sphinx. To use the sphinx formatter in Sphinx, but these lines
in docs/conf.py:

>>> import kemepo
>>> kemepo.set_docstring_formatter('sphinx')

This must be done before you import any of your Dispatcher subclasses, because
the docstrings are created at the same time as the class itself.

If you want to write a custom formatter, provide a function that accepts a
single OrderedDict argument. This is a mapping between event names and
EventMetaData objects, in the order that the events were defined. Return a
string to incorporate into the class docstring. You may find the
format_arg_spec() and format_description() functions useful.

API Documentation

	
class kemepo.Dispatcher[source]

	Provide event handling functionality. Meant to be subclassed.

Only subclasses of Dispatcher can register and broadcast events.
Registration of events is mostly done using the event decorator, but can
also be done manually. Each type of event can be associated with one
internal handler and any number of external observers. The internal
handler must be specified when the event is registered (e.g. using the
event decorator) while external observers can be added or removed at any
time using connect() and disconnect().

Two methods are provided to broadcast events: handle() and notify(). The
former invokes the internal handler and the external observers, while the
latter only invokes the external observers.

Note that you can include documentation for every event registered to a
Dispatcher subclass by adding the string ‘{events}’ to the subclass’s
docstring. This will be replaced by a informative message at runtime.
This is useful both for interactive usage and for Sphinx documentation.

	
classmethod register_event(event, handler=None)[source]

	Register the given event name.

Typically you would not directly call this method. Instead you would
use the event() decorator to define events from methods.

If a handler is given, it will be set as the internal handler for this
event. The internal handler is invoked before any external observers
when this event is triggered. The internal handler is also used for
error-checking and documentation purposes, so it is good to provide one
even if it doesn’t do anything.

	
classmethod get_registered_events()[source]

	Return a list of all the events that have been registered with
this class. This list will include events defined in parent classes,
and will be in the same order that the events were defined in.

	
classmethod get_registered_event_metadata(event)[source]

	Return the metadata for the given event. If the given event has
not been defined for this class, a TypeError is raised.

	
classmethod list_registered_events()[source]

	Print out every event registered by this class. This is meant to
make debugging easier.

	
handle(event, *args, **kwargs)[source]

	Handle the given event.

This invokes the internal handler for this event and any external
observers attached to this event using connect().

	
notify(event, *args, **kwargs)[source]

	Notify observers about the given event.

Unlike handle(), this method doesn’t invoke the internal handler for
the given event. In other words, it only invokes external observers
attached to the event. This is a useful distinction when you’re trying
to avoid infinite loops, but otherwise handle() should be preferred.

	
connect(*observer_objects, **observer_callbacks)[source]

	Attach observers to events.

This method is very flexible in the arguments it takes. The keyword
arguments are the simpler case. These arguments are expected to be
simple ‘event=callback’ pairs. The callback will then be invoked
whenever the event is triggered, until it is disconnected. An
exception will be thrown if the specified event isn’t registered.

The regular arguments are more complicated. These are taken to be
objects with methods that are meant to be observers. In particular, a
method is taken to be an observer if its name matches the name of an
event registered with this dispatcher. Every such method found will be
invoked whenever its corresponding event is triggered.

If an internal handler was specified when the event was registered (the
usual case), every observer is check to make sure it takes the same
arguments as that handler. This is a useful way to catch programming
mistakes. Even if the internal handler doesn’t do anything, it can
still help catch errors in the observers.

	
disconnect(observer)[source]

	Disconnect the given observer from any events it may be connected to.

	
kemepo.event(handler)[source]

	Register a new type of event.

New events can be registered by providing a handler function. The name of
the function is used as the name of the event, and the function itself is
setup to be called whenever the event needs to be handled. This decorator
makes it easy register events from method in Dispatcher subclasses.

>>> class Button (Dispatcher):
 @event
 def on_press(self):
 print('Calling internal handler.')

Methods that get decorated by event() become “internal handlers”, distinct
from “external observers” that can be attached later on using connect().
When an event is triggered, the handler for that event is always called
before any observers.

Technical detail: This decorator can’t actually register the new event,
because it is called before the class is created. Instead, it just marks
the method so that a new event will be created when the class is created.
The actual event registration is handled by DispatcherMetaclass.

	
kemepo.set_docstring_formatter(formatter)[source]

	Set the function used to format event docstrings.

The formatter argument can either be a function which accepts a dictionary
of registered events (i.e. mapping event names to EventMetadata objects) or
the name of one of the builtin formatters:

	“pretty” – Easier to read in the terminal, used by default.

	“sphinx” – More verbose, but valid restructured text.

	
kemepo.pretty_docstring_formatter(cls, registered_events)[source]

	Use a human-readable format to display information about the given events.

	
kemepo.sphinx_docstring_formatter(cls, registered_events)[source]

	Use a strict restructured-text format the display information about the
given events. This is less readable that the “pretty” format, but it is
rendered nicely by Sphinx. If you want to make sphinx documentation, put
these lines in your configuration file:

>>> import kemepo
>>> kemepo.set_docstring_formatter('sphinx')
>>> import your_dispatcher_subclasses

	
kemepo.format_arg_spec(metadata)[source]

	Return a string representing the arguments taken by the handler for the
given event. This is meant to be used by the docstring formatters.

	
kemepo.format_description(metadata, indent=4)[source]

	Return a properly indented paragraph describing the given event. This is
meant to be used by the docstring formatters.

	
class kemepo.DispatcherMetaclass(name, bases, dict)[source]

	Instantiate Dispatcher subclasses.

This class has two primary roles:

	Register events marked by the event() decorator.

	Generate docstring based on the registered events.

This first role is just a technical detail. Decorators are a convenient
way to specify events to register, but they can’t actually register events
because they’re invoked before the class has been created. So instead they
just label the methods, and the metaclass does the real registration.

The second role is a convenience. If you put the string ‘{events}’ in the
docstring of a Dispatcher subclass, it will be replaced at runtime by a
description of the events registered in that subclass.

	
class kemepo.EventMetadata(handler=None)[source]

	Store information about a registered event.

The information stored in this object is used in almost every aspect of
this module. A brief overview of this information is given below. The
name of the event is conspicuously not included. This is because
dispatchers store event metadata in dictionaries where the keys are the
event names, so storing the names again here would be redundant.

	The internal handler:

	Called before any observers when the event is being handled.

	The handler’s argument specification:

	Used the validate external observers.

	The documentation for the event:

	Used to add event info to Dispatcher docstrings. This documentation
usually comes from the docstring of the internal handler.

	
validate_arguments(args, kwargs)[source]

	Raise an exception if the given arguments are not compatible with
the handler for this event.

This method is currently left unimplemented, because an exception will
be thrown anyway once the handler is called with the wrong arguments.
I left this machinery in because I think more stringent error-checking
might be useful in the future.

	
validate_observer(observer)[source]

	Raise an exception if the given observer takes different arguments
that the internal handler for this type of event.

 Copyright 2014, Kale Kundert.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	KeepMePosted 0.1 documentation

Index

 C
 | D
 | E
 | F
 | G
 | H
 | L
 | N
 | P
 | R
 | S
 | V

C

 	

 	connect() (kemepo.Dispatcher method)

D

 	

 	disconnect() (kemepo.Dispatcher method)

 	Dispatcher (class in kemepo)

 	

 	DispatcherMetaclass (class in kemepo)

E

 	

 	event() (in module kemepo)

 	

 	EventMetadata (class in kemepo)

F

 	

 	format_arg_spec() (in module kemepo)

 	

 	format_description() (in module kemepo)

G

 	

 	get_registered_event_metadata() (kemepo.Dispatcher class method)

 	

 	get_registered_events() (kemepo.Dispatcher class method)

H

 	

 	handle() (kemepo.Dispatcher method)

L

 	

 	list_registered_events() (kemepo.Dispatcher class method)

N

 	

 	notify() (kemepo.Dispatcher method)

P

 	

 	pretty_docstring_formatter() (in module kemepo)

R

 	

 	register_event() (kemepo.Dispatcher class method)

S

 	

 	set_docstring_formatter() (in module kemepo)

 	

 	sphinx_docstring_formatter() (in module kemepo)

V

 	

 	validate_arguments() (kemepo.EventMetadata method)

 	

 	validate_observer() (kemepo.EventMetadata method)

 Copyright 2014, Kale Kundert.
 Created using Sphinx 1.2.2.

 _modules/index.html

 Navigation

 		
 index

 		KeepMePosted 0.1 documentation »

 All modules for which code is available

		kemepo

 © Copyright 2014, Kale Kundert.
 Created using Sphinx 1.2.2.

_static/up.png

_modules/kemepo.html

 Navigation

 		
 index

 		KeepMePosted 0.1 documentation »

 		Module code »

 Source code for kemepo

from __future__ import print_function

"""
This module provides an object-oriented event handling framework. In this
framework, events are registered by classes and then broadcasted by individual
objects. Listening for events from specific objects is made easy.

The most important parts of this framework are:

 Dispatcher -- base class that provides event handling functionality.
 event -- decorator that register events in Dispatcher subclasses.

A simple example of the framework in use:

 >>> class Button (Dispatcher):
 @event
 def on_press(self):
 print('Calling internal handler.')

 >>> button = Button()
 >>> button.connect(on_press=lambda: print('Calling external observer.'))
 >>> button.handle('on_press')
 Calling internal handler.
 Calling external observer.

The event decorator is used to register new events. The name of the event will
be taken from the name of the decorated method, and the method itself will be
used as the internal handler for that type of event. The internal handler can
be bypassed by using notify() instead of handle():

 >>> button.notify('on_press')
 Calling external observer.

Strong error checking is possible because events are registered when the class
is created. Exceptions are thrown if you attempt any of the following:

1. Connect to an undefined event.
2. Handle an undefined event.
3. Connect an observer that doesn't have the same argument signature as the
 internal handler.
4. Handle an event without providing the arugments expected by the internal
 handler.
"""

import six
import inspect
import collections

[docs]def set_docstring_formatter(formatter):
 """
 Set the function used to format event docstrings.

 The formatter argument can either be a function which accepts a dictionary
 of registered events (i.e. mapping event names to EventMetadata objects) or
 the name of one of the builtin formatters:

 * "pretty" -- Easier to read in the terminal, used by default.
 * "sphinx" -- More verbose, but valid restructured text.
 """
 DispatcherMetaclass.set_docstring_formatter(formatter)

[docs]def pretty_docstring_formatter(cls, registered_events):
 """
 Use a human-readable format to display information about the given events.
 """

 events_docstring = "Events\n------\n"

 for event, metadata in registered_events.items():
 events_docstring += event + format_arg_spec(metadata) + '\n'
 events_docstring += format_description(metadata, 4) + '\n\n'

 if registered_events:
 events_docstring = events_docstring[:-2]
 else:
 events_docstring += "None defined."

 return events_docstring

[docs]def sphinx_docstring_formatter(cls, registered_events):
 """
 Use a strict restructured-text format the display information about the
 given events. This is less readable that the "pretty" format, but it is
 rendered nicely by Sphinx. If you want to make sphinx documentation, put
 these lines in your configuration file:

 >>> import kemepo
 >>> kemepo.set_docstring_formatter('sphinx')
 >>> import your_dispatcher_subclasses
 """

 events_docstring = ":events:\n"

 for event, metadata in registered_events.items():
 events_docstring += ' **' + event + '**'
 events_docstring += format_arg_spec(metadata) + '\n'
 events_docstring += format_description(metadata, 8) + '\n\n'

 if registered_events:
 events_docstring = events_docstring[:-2]
 else:
 events_docstring += " None defined."

 return events_docstring

[docs]def format_arg_spec(metadata):
 """
 Return a string representing the arguments taken by the handler for the
 given event. This is meant to be used by the docstring formatters.
 """

 if metadata.arg_spec is None:
 return ""

 results = []

 arguments = metadata.arg_spec.args
 defaults = metadata.arg_spec.defaults
 varargs = metadata.arg_spec.varargs
 kwargs = metadata.arg_spec.keywords

 num_arguments = len(arguments)
 num_defaults = len(defaults) if defaults is not None else 0

 for index, argument in enumerate(arguments):
 if index == 0 and argument == 'self':
 continue

 default_index = index - num_arguments + num_defaults
 if default_index >= 0:
 argument += '={}'.format(defaults[default_index])

 results.append(argument)

 if varargs is not None:
 results.append('*' + varargs)

 if kwargs is not None:
 results.append('**' + kwargs)

 if results:
 return ' : ' + ', '.join(results)
 else:
 return ''

[docs]def format_description(metadata, indent=4):
 """
 Return a properly indented paragraph describing the given event. This is
 meant to be used by the docstring formatters.
 """

 import textwrap

 options = dict(
 initial_indent=' ' * indent, subsequent_indent=' ' * indent)

 description = metadata.doc_string.strip()
 description = description.replace(' \n', '\n')
 description = textwrap.fill(description, width=75, **options)

 return description

[docs]class DispatcherMetaclass (type):
 """
 Instantiate Dispatcher subclasses.

 This class has two primary roles:

 1. Register events marked by the event() decorator.
 2. Generate docstring based on the registered events.

 This first role is just a technical detail. Decorators are a convenient
 way to specify events to register, but they can't actually register events
 because they're invoked before the class has been created. So instead they
 just label the methods, and the metaclass does the real registration.

 The second role is a convenience. If you put the string '{events}' in the
 docstring of a Dispatcher subclass, it will be replaced at runtime by a
 description of the events registered in that subclass.
 """

 def __init__(cls, name, bases, dict):
 """
 Register events and build a docstring for Dispatcher subclasses.
 """
 super(DispatcherMetaclass, cls).__init__(name, bases, dict)
 cls._events = collections.OrderedDict()

 # Register events that were labeled with the 'event' decorator. Take
 # care to add events in the same order they were defined (for
 # documentation purposes).

 events = []

 for key, member in dict.items():
 if hasattr(member, '_event_id'):
 events.append((member._event_id, key, member))

 for id, key, member in sorted(events):
 cls.register_event(key, member)

 # Automatically add these events to the class doc-string.

 class_docstring = inspect.getdoc(cls) or ""
 registered_events = cls.get_registered_events()
 events_docstring = cls.docstring_formatter(registered_events)
 cls.__doc__ = class_docstring.format(events=events_docstring)

 @classmethod
 def set_docstring_formatter(cls, formatter):
 try:
 builtin_formatters = cls.builtin_docstring_formatters
 cls.docstring_formatter = builtin_formatters[formatter]
 except KeyError:
 cls.docstring_formatter = formatter

 # Built-in Docstring Formatters (fold)
 builtin_docstring_formatters = {
 'sphinx': sphinx_docstring_formatter,
 'pretty': pretty_docstring_formatter,
 }

 docstring_formatter = builtin_docstring_formatters['pretty']

@six.add_metaclass(DispatcherMetaclass)
[docs]class Dispatcher (object):
 """
 Provide event handling functionality. Meant to be subclassed.

 Only subclasses of Dispatcher can register and broadcast events.
 Registration of events is mostly done using the event decorator, but can
 also be done manually. Each type of event can be associated with one
 internal handler and any number of external observers. The internal
 handler must be specified when the event is registered (e.g. using the
 event decorator) while external observers can be added or removed at any
 time using connect() and disconnect().

 Two methods are provided to broadcast events: handle() and notify(). The
 former invokes the internal handler and the external observers, while the
 latter only invokes the external observers.

 Note that you can include documentation for every event registered to a
 Dispatcher subclass by adding the string '{{events}}' to the subclass's
 docstring. This will be replaced by a informative message at runtime.
 This is useful both for interactive usage and for Sphinx documentation.
 """

 def __init__(self):
 """ Default constructor. Be sure to call in subclasses. """
 self._observers = collections.defaultdict(lambda: [])

 @classmethod
[docs] def register_event(cls, event, handler=None):
 """
 Register the given event name.

 Typically you would not directly call this method. Instead you would
 use the event() decorator to define events from methods.

 If a handler is given, it will be set as the internal handler for this
 event. The internal handler is invoked before any external observers
 when this event is triggered. The internal handler is also used for
 error-checking and documentation purposes, so it is good to provide one
 even if it doesn't do anything.
 """
 cls._events[event] = EventMetadata(handler)

 @classmethod
[docs] def get_registered_events(cls):
 """
 Return a list of all the events that have been registered with
 this class. This list will include events defined in parent classes,
 and will be in the same order that the events were defined in.
 """
 events = collections.OrderedDict()
 for base in reversed(inspect.getmro(cls)):
 try: events.update(base._events)
 except AttributeError: pass
 return events

 @classmethod
[docs] def get_registered_event_metadata(cls, event):
 """
 Return the metadata for the given event. If the given event has
 not been defined for this class, a TypeError is raised.
 """
 try:
 return cls.get_registered_events()[event]
 except KeyError:
 message = "Event '{}' not registered with '{}'."
 raise TypeError(message.format(event, cls.__name__))

 @classmethod
[docs] def list_registered_events(cls):
 """ Print out every event registered by this class. This is meant to
 make debugging easier. """

 native = cls._events.keys()
 inherited = []

 for base in inspect.getmro(cls):
 if issubclass(base, Dispatcher):
 inherited += base._events.keys()

 print("Native events:", native)
 print("Inherited events:", inherited)

[docs] def handle(self, event, *args, **kwargs):
 """
 Handle the given event.

 This invokes the internal handler for this event and any external
 observers attached to this event using connect().
 """

 metadata = self.get_registered_event_metadata(event)
 metadata.validate_arguments(args, kwargs)

 if metadata.handler is not None:
 metadata.handler(self, *args, **kwargs)

 for observer in self._observers[event]:
 observer(*args, **kwargs)

[docs] def notify(self, event, *args, **kwargs):
 """
 Notify observers about the given event.

 Unlike handle(), this method doesn't invoke the internal handler for
 the given event. In other words, it only invokes external observers
 attached to the event. This is a useful distinction when you're trying
 to avoid infinite loops, but otherwise handle() should be preferred.
 """
 metadata = self.get_registered_event_metadata(event)
 metadata.validate_arguments(args, kwargs)

 for observer in self._observers[event]:
 observer(*args, **kwargs)

[docs] def connect(self, *observer_objects, **observer_callbacks):
 """
 Attach observers to events.

 This method is very flexible in the arguments it takes. The keyword
 arguments are the simpler case. These arguments are expected to be
 simple 'event=callback' pairs. The callback will then be invoked
 whenever the event is triggered, until it is disconnected. An
 exception will be thrown if the specified event isn't registered.

 The regular arguments are more complicated. These are taken to be
 objects with methods that are meant to be observers. In particular, a
 method is taken to be an observer if its name matches the name of an
 event registered with this dispatcher. Every such method found will be
 invoked whenever its corresponding event is triggered.

 If an internal handler was specified when the event was registered (the
 usual case), every observer is check to make sure it takes the same
 arguments as that handler. This is a useful way to catch programming
 mistakes. Even if the internal handler doesn't do anything, it can
 still help catch errors in the observers.
 """
 for object in observer_objects:
 for event in self.get_registered_events():
 try: observer = getattr(object, event)
 except AttributeError: continue
 metadata = self.get_registered_event_metadata(event)
 metadata.validate_observer(observer)
 self._observers[event].append(observer)

 for event, observer in observer_callbacks.items():
 metadata = self.get_registered_event_metadata(event)
 metadata.validate_observer(observer)
 self._observers[event].append(observer)

[docs] def disconnect(self, observer):
 """
 Disconnect the given observer from any events it may be connected to.
 """
 for event in self._observers:
 try: self._observers[event].remove(observer)
 except ValueError: pass

 try:
 sub_handler = getattr(observer, event)
 self._observers[event].remove(sub_handler)
 except (AttributeError, ValueError): pass

[docs]class EventMetadata (object):
 """
 Store information about a registered event.

 The information stored in this object is used in almost every aspect of
 this module. A brief overview of this information is given below. The
 name of the event is conspicuously not included. This is because
 dispatchers store event metadata in dictionaries where the keys are the
 event names, so storing the names again here would be redundant.

 The internal handler:
 Called before any observers when the event is being handled.

 The handler's argument specification:
 Used the validate external observers.

 The documentation for the event:
 Used to add event info to Dispatcher docstrings. This documentation
 usually comes from the docstring of the internal handler.
 """

 def __init__(self, handler=None):
 """
 Construct event metadata from a handler function.
 """
 self.handler = handler

 if handler is not None:
 self.arg_spec = inspect.getargspec(handler)
 self.doc_string = inspect.cleandoc(handler.__doc__ or "")
 else:
 self.arg_spec = None
 self.doc_string = ""

[docs] def validate_arguments(self, args, kwargs):
 """
 Raise an exception if the given arguments are not compatible with
 the handler for this event.

 This method is currently left unimplemented, because an exception will
 be thrown anyway once the handler is called with the wrong arguments.
 I left this machinery in because I think more stringent error-checking
 might be useful in the future.
 """
 pass

[docs] def validate_observer(self, observer):
 """
 Raise an exception if the given observer takes different arguments
 that the internal handler for this type of event.
 """
 if self.arg_spec is None:
 return

 observer_spec = inspect.getargspec(observer)
 observer_args = observer_spec.args
 observer_defaults = observer_spec.defaults
 observer_varargs = observer_spec.varargs
 observer_kwargs = observer_spec.keywords

 event_args = self.arg_spec.args
 event_defaults = self.arg_spec.defaults
 event_varargs = self.arg_spec.varargs
 event_kwargs = self.arg_spec.keywords

 # Remove the 'self' argument from methods that are presumably bound.

 if observer_args and observer_args[0] == 'self':
 observer_args = observer_args[1:]
 if event_args and event_args[0] == 'self':
 event_args = event_args[1:]

 # Make sure this observer takes the right number of arguments.

 if len(event_args) != len(observer_args):
 message = "Observer takes {} arguments, {} expected."
 raise TypeError(message.format(observer_args, event_args))

 if (event_varargs is not None) and (observer_varargs is None):
 message = "Observer expected to take variable arguments."
 raise TypeError(message)

 if (event_kwargs is not None) and (observer_kwargs is None):
 message = "Observer expected to take keyword arguments."
 raise TypeError(message)

[docs]def event(handler):
 """ Register a new type of event.

 New events can be registered by providing a handler function. The name of
 the function is used as the name of the event, and the function itself is
 setup to be called whenever the event needs to be handled. This decorator
 makes it easy register events from method in Dispatcher subclasses.

 >>> class Button (Dispatcher):
 @event
 def on_press(self):
 print('Calling internal handler.')

 Methods that get decorated by event() become "internal handlers", distinct
 from "external observers" that can be attached later on using connect().
 When an event is triggered, the handler for that event is always called
 before any observers.

 Technical detail: This decorator can't actually register the new event,
 because it is called before the class is created. Instead, it just marks
 the method so that a new event will be created when the class is created.
 The actual event registration is handled by DispatcherMetaclass. """

 try: event.counter += 1
 except AttributeError: event.counter = 0
 handler._event_id = event.counter
 return handler

 © Copyright 2014, Kale Kundert.
 Created using Sphinx 1.2.2.

_static/plus.png

search.html

 Navigation

 		
 index

 		KeepMePosted 0.1 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2014, Kale Kundert.
 Created using Sphinx 1.2.2.

_static/comment-close.png

_static/up-pressed.png

_static/down-pressed.png

_static/comment-bright.png

_static/file.png

_static/down.png

_static/ajax-loader.gif

_static/minus.png

_static/comment.png

